Systems of MDS codes from units and idempotents
نویسندگان
چکیده
Algebraic systems are constructed from which series of maximum distance separable (mds) codes are derived. The methods use unit and idempotent schemes.
منابع مشابه
A Non-MDS Erasure Code Scheme for Storage Applications
This paper investigates the use of redundancy and self repairing against node failures indistributed storage systems using a novel non-MDS erasure code. In replication method, accessto one replication node is adequate to reconstruct a lost node, while in MDS erasure codedsystems which are optimal in terms of redundancy-reliability tradeoff, a single node failure isrepaired after recovering the ...
متن کاملConstacyclic Codes over Group Ring (Zq[v])/G
Recently, codes over some special finite rings especially chain rings have been studied. More recently, codes over finite non-chain rings have been also considered. Study on codes over such rings or rings in general is motivated by the existence of some special maps called Gray maps whose images give codes over fields. Quantum error-correcting (QEC) codes play a crucial role in protecting quantum ...
متن کاملNew MDS or near MDS self-dual codes over finite fields
The study of MDS self-dual codes has attracted lots of attention in recent years. There are many papers on determining existence of q−ary MDS self-dual codes for various lengths. There are not existence of q−ary MDS self-dual codes of some lengths, even these lengths < q. We generalize MDS Euclidean self-dual codes to near MDS Euclidean self-dual codes and near MDS isodual codes. And we obtain ...
متن کاملCauchy MDS Array Codes With Efficient Decoding Method
Array codes have been widely used in communication and storage systems. To reduce computational complexity, one important property of the array codes is that only XOR operation is used in the encoding and decoding process. In this work, we present a novel family of maximal-distance separable (MDS) array codes based on Cauchy matrix, which can correct up to any number of failures. We also propos...
متن کاملA Novel Construction of Low-Complexity MDS Codes with Optimal Repair Capability for Distributed Storage Systems
Maximum-distance-separable (MDS) codes are a class of erasure codes that are widely adopted to enhance the reliability of distributed storage systems (DSS). In (n, k) MDS coded DSS, the original data are stored into n distributed nodes in an efficient manner such that each storage node only contains a small amount (i.e., 1/k) of the data and a data collector connected to any k nodes can retriev...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Mathematics
دوره 335 شماره
صفحات -
تاریخ انتشار 2014